
TONCO

Smart Contract Security Audit

No. 202411221000

Nov 22nd, 2024

SECURING BLOCKCHAIN ECOSYSTEM

WWW.BEOSIN.COM


```

TONCO Security Audit

Page 2 of 23

Contents

1 Overview ........................................................................................................................................................... 8

1.1 Project Overview .................................................................................................................................... 8

1.2 Audit Overview ....................................................................................................................................... 8

1.3 Audit Method .......................................................................................................................................... 8

2 Findings .......................................................................................................................................................... 10

[TONCO-01] Incentive calculation flaws ................................................................................................. 11

[TONCO-02] Lack of Lock function .........................................................................................................12

[TONCO-03] The pool can be initializedmultiple times ........................................................................ 13

[TONCO-04] Poor calibration ...................................................................................................................14

[TONCO-05] Redundant code .................................................................................................................. 15

3 Appendix ........................................................................................................................................................ 16

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts .................................................16

3.2 Audit Categories ................................................................................................................................. 19

3.3 Disclaimer ............................................................................................................................................ 21

3.4 About Beosin ....................................................................................................................................... 22



```

TONCO Security Audit

Page 3 of 23

Summary of Audit Results

After auditing, 2 Low ,3 Info item was identified in the TONCO project. Specific audit details will be

presented in the Findings section. Users should pay attention to the following aspects when

interacting with this project:

Low
Fixed : 0 Acknowledged: 2

Info
Fixed : 0 Acknowledged: 3


```

TONCO Security Audit

Page 4 of 23

 Project Description:

The audited TONCO project is a decentralized exchange (DEX) platform, consisting of four core

modules: The Router module is responsible for managing pool funds, handling the receipt and sending

of funds, and supporting pool creation and related settings by administrators; the Account module

allows users to add liquidity; the NFT module records the data of each liquidity addition by users,

generating a new NFT each time liquidity is added; the Pool module provides functionality for adding

and removing liquidity as well as token swaps. For a detailed process, please refer to the explanation

below:

 Create pool function：

This diagram shows the process of the admin creating a pool. In this process, the admin first sends the

ROUTERV3_OPERATION_CREATE_POOL command to routerv3, which includes information such as

the jetton_wallet0 and jetton_wallet1 wallet address for the pool being created. Upon receiving the

command, routerv3 calculates the pool's address and sends the POOLV3_OPERATION_INIT operation

to poolv3 to initialize the pool. Once the pool initialization is complete, poolv3 sends the

OPERATION_EXCESSES command to routerv3 to refund any excess gas.



```

TONCO Security Audit

Page 5 of 23

 Adding Liquidity function：

Below is the process flow for adding liquidity. First, the user transfers funds to the router contract's

wallet0 and wallet1, as adding liquidity requires two types of tokens. Once the relevant wallets in the

router contract receive the transfer, they notify the routerv3 contract to call the

POOLV3_OPERATION_FUND_ACCOUNT operation to prepare for the liquidity addition. This step

primarily involves calculating the poolv3 address and packaging the message. Next, routerv3 sends the

POOLV3_OPERATION_FUND_ACCOUNT command to the poolv3 contract to compute the user’s

account address and package the corresponding message. The poolv3 contract then sends the

ACCOUNTV3_OPERATION_ADD_LIQUIDITY command to the user's Account contract, where it verifies

that the liquidity amount meets the requirements. If the requirements are met, the Account contract

sends the POOLV3_OPERATION_MINT command to the poolv3 contract, which then calculates the

user's NFT address. The poolv3 contract subsequently sends the POOLV3_OPERATION_MINT

command to the user’s NFT contract to record the amount of liquidity added and related parameters,

as well as to initialize the NFT. Finally, the poolv3 contract calls the OP:OPERATION_EXCESSES

command to refund the remaining gas to the user.


```

TONCO Security Audit

Page 6 of 23

 Removing Liquidity function：

First, the user initiates a POOLV3_OPERATION_START_BURN operation request to the poolv3 contract.

Upon receiving this instruction, poolv3 calculates the address of positionnft and updates the latest fee

data such as feeGrowthInside0X128 and feeGrowthInside1X128. It then packages this data and sends

an OPERATION_POSITION_BURN instruction to the positionnft contract. After receiving the

instruction, the positionnft contract updates the user’s feeGrowthInside0X128, feeGrowthInside1X128,

and other parameters, then sends a POOLV3_OPERATION_BURN instruction to the routerv3 contract

to calculate the rewards and corresponding liquidity amount to be removed for the user. Subsequently,

routerv3 sends send_simple_message instructions to the wallet0 and wallet1 addresses of the

routerv3 contract to execute the transfer. Finally, the corresponding funds are transferred to the user.

 Swap function：

The process of the user's token swap is as follows: First, the user transfers the token0 to the router's

jetton_wallet0. Once the wallet receives token0, it sends the OPERATION_TRANSFER_NOTIFICATION

instruction to the routerv3 contract, notifying routerv3 to perform the POOLV3_OPERATION_SWAP

operation. This instruction is primarily used to package the message and calculate the corresponding

pool address for token0 and token1. Then, routerv3 sends the POOLV3_OPERATION_SWAP instruction

to poolv3. After receiving the message, poolv3 calculates the amount of token1 to be exchanged.



```

TONCO Security Audit

Page 7 of 23

Subsequently, routerv3 sends the ROUTERV3_OPERATION_PAY_TO instruction to notify the router to

initiate the transfer. Finally, routerv3 uses the send_simple_message instruction to notify

jetton_wallet1 to transfer token1 to the user, completing the entire swap process.


```

TONCO Security Audit

Page 8 of 23

1 Overview

1.1 Project Overview

Project Name TONCO

Project language Func

Platform Ton Chain

Base code https://github.com/cryptoTONCO/TONCO-ton-contracts/tree/apimenov_revie
w_29_10_24

Commit 9ee8ae79b8a4f51ddec9b486051427ab5ec88807

1.2 Audit Overview

Audit work duration: Nov 6, 2024 – Nov 22, 2024

Audit team: Beosin Security Team

1.3 Audit Method

The audit methods are as follows:

1. Formal Verification

Formal verification is a technique that uses property-based approaches for testing and verification.

Property specifications define a set of rules using Beosin's library of security expert rules. These rules

call into the contracts under analysis and make various assertions about their behavior. The rules of

the specification play a crucial role in the analysis. If the rule is violated, a concrete test case is

provided to demonstrate the violation.

2. Manual Review

Using manual auditing methods, the code is read line by line to identify potential security issues. This

ensures that the contract's execution logic aligns with the client's specifications and intentions,

thereby safeguarding the accuracy of the contract's business logic.

Themanual audit is divided into three groups to cover the entire auditing process:

The Basic Testing Group is primarily responsible for interpreting the project's code and conducting

comprehensive functional testing.



```

TONCO Security Audit

Page 9 of 23

The Simulated Attack Group is responsible for analyzing the audited project based on the collected

historical audit vulnerability database and security incident attack models. They identify potential

attack vectors and collaborate with the Basic Testing Group to conduct simulated attack tests.

The Expert Analysis Group is responsible for analyzing the overall project design, interactions with third

parties, and security risks in the on-chain operational environment. They also conduct a review of the

entire audit findings.

3. Static Analysis

Static analysis is a method of examining code during compilation or static analysis to detect issues.

Beosin-VaaS can detect more than 100 common smart contract vulnerabilities through static analysis,

such as reentrancy and block parameter dependency. It allows early and efficient discovery of

problems to improve code quality and security.


```

TONCO Security Audit

Page 10 of 23

2 Findings

Index Risk description Severity level Status

TONCO-01 Incentive calculation flaws Low Acknowledged

TONCO-02 Lack of Lock function Low Acknowledged

TONCO-03 The pool can be initializedmultiple times Info Acknowledged

TONCO-04 Poor calibration Info Acknowledged

TONCO-05 Redundant code Info Acknowledged



```

TONCO Security Audit

Page 11 of 23

Finding Details:

[TONCO-01] Incentive calculation flaws

Severity Level Low

Type Business Security

Lines poolv3.func#L396

Description Because TON messages are processed asynchronously, the following scenario

may occur: assume that the user removes mobility with a default

feeGrowthInside0LastX128 of 0 and an incoming feeGrowthInside0CurrentX128

of 100. The message to remove mobility is first sent to the positionnft contract,

which updates the user's feeGrowthInside0LastX128 to 100. The remove

mobility message is first sent to the positionnft contract, which updates the

user's feeGrowthInside0LastX128 to 100. The message is then sent to the pool

contract to calculate the reward. However, during this process, the pool

contract's feeGrowthInside0X128 is updated to 110. At this point, the user's

incoming feeGrowthInside0CurrentX128 is 0, and the reward is calculated as 0 -

110, but is recorded as 100 in the positionnft contract. After that, the user can

continue to calculate the reward based on the fact that

feeGrowthInside0LastX128 is 100, resulting in the user receiving an additional

portion of the reward.

Recommendation

It is recommended that the latest feeGrowthInside0X128 and

feeGrowthInside1X128 be passed to the positionnft contract to allow for

updates and to ensure that the calculations are based on the latest fee growth

data.

Status Acknowledged. Description of the project party: It’s quite difficult to make a

synchronous system in an async environment, so we decided to go with our

solution. Yes, a user that burns the NFT would lose the reward that arrives

exactly during the burn process. However we think that if a user commits to

burn knowing the state of the chain in t_0 it can’t predict this reward. So for

him/her nothing of value is lost.


```

TONCO Security Audit

Page 12 of 23

[TONCO-02] Lack of Lock function

Severity Level Low

Type Business Security

Lines routerv3.func

Description The is_locked variable is defined in the router contract, but the contract does

not include a function to modify is_locked.

Recommendation
It is recommended that the router contract add admin's modification of

is_locked and implement the corresponding lock function.

Status Acknowledged. Description of the project party: We re-woked router not to

have is_locked variable instead each pool now locks separately and can be

locked gracefully - swaps and mints are not allowed, burns however are still

allowed.



```

TONCO Security Audit

Page 13 of 23

[TONCO-03] The pool can be initialized multiple times

Severity Level Info

Type Business Security

Lines poolv3.func#L50-132

Description There is a potential multiple initialization problem when creating pools, as it

allows repeated modification of multiple key states of the pool (e.g.,

administrator, controller, price, NFT content, etc.). These parameters can be

updated with each call, and there is no mechanism to prevent multiple

initializations, which may lead to problems such as inconsistent pool states,

conflicting price settings, and confusing permissions management, thus

affecting the proper operation and security of the pool.

Recommendation It is recommended that pools be initialized only once.

Status Acknowledged.


```

TONCO Security Audit

Page 14 of 23

[TONCO-04] Poor calibration

Severity Level Info

Type Business Security

Lines routerv3.func

Description In the swap and add liquidity functions of router contracts, if a user inputs

wrong tokens (e.g., the user transfers A tokens but incorrectly specifies A

tokens as the exchange target), due to the lack of a strict checking and error

bouncing mechanism, the funds transferred by the user can't be refunded,

which results in the loss of the user's funds.

Recommendation

It is recommended to verify the reasonableness of the generated pool address

when calculating it. The administrator should save the generated pool address

when creating the pool and compare it with the saved address each time it is

calculated, if it does not make sense, immediately roll back the transaction and

return the funds to the wallet.

Status Acknowledged.



```

TONCO Security Audit

Page 15 of 23

[TONCO-05] Redundant code

Severity Level Info

Type Coding Conventions

Lines get.func#L48,60

Description As shown in the code below, the hash obtained in the function is not used and is

redundant code.

(cell, cell, cell) getChildContracts() method_id {

load_storage();

int hash = cell_hash(router::accountv3_code);

return (

router::poolv3_code,

router::accountv3_code,

router::position_nftv3_code

);

}

(cell) getPoolInitialData(slice jetton_wallet0, slice jetton_wallet1)

method_id {

load_storage();

cell data = pack_pool_data(jetton_wallet0, jetton_wallet1,

router::accountv3_code, router::position_nftv3_code);

int hash = cell_hash(data);

return data;

}

Recommendation It is recommended that redundant code be removed.

Status Acknowledged.


```

TONCO Security Audit

Page 16 of 23

3 Appendix

3.1 Vulnerability Assessment Metrics and Status in Smart Contracts

3.1.1 Metrics

In order to objectively assess the severity level of vulnerabilities in blockchain systems, this report

provides detailed assessment metrics for security vulnerabilities in smart contracts with reference to

CVSS 3.1 (Common Vulnerability Scoring System Ver 3.1).

According to the severity level of vulnerability, the vulnerabilities are classified into four levels:

"critical", "high", "medium" and "low". It mainly relies on the degree of impact and likelihood of

exploitation of the vulnerability, supplemented by other comprehensive factors to determine of the

severity level.

Impact

Likelihood
Severe High Medium Low

Probable Critical High Medium Low

Possible High Medium Medium Low

Unlikely Medium Medium Low Info

Rare Low Low Info Info



```

TONCO Security Audit

Page 17 of 23

3.1.2 Degree of impact

 Critical

Critical impact generally refers to the vulnerability can have a serious impact on the confidentiality,

integrity, availability of smart contracts or their economic model, which can cause substantial

economic losses to the contract business system, large-scale data disruption, loss of authority

management, failure of key functions, loss of credibility, or indirectly affect the operation of other

smart contracts associated with it and cause substantial losses, as well as other severe and mostly

irreversible harm.

 High

High impact generally refers to the vulnerability can have a relatively serious impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

greater economic loss, local functional unavailability, loss of credibility and other impact to the

contract business system.

 Medium

Medium impact generally refers to the vulnerability can have a relatively minor impact on the

confidentiality, integrity, availability of the smart contract or its economic model, which can cause a

small amount of economic loss to the contract business system, individual business unavailability and

other impact.

 Low

Low impact generally refers to the vulnerability can have a minor impact on the smart contract, which

can pose certain security threat to the contract business system and needs to be improved.

3.1.3 Likelihood of Exploitation

 Probable

Probable likelihood generally means that the cost required to exploit the vulnerability is low, with no

special exploitation threshold, and the vulnerability can be triggered consistently.

 Possible

Possible likelihood generally means that exploiting such vulnerability requires a certain cost, or there

are certain conditions for exploitation, and the vulnerability is not easily and consistently triggered.


```

TONCO Security Audit

Page 18 of 23

 Unlikely

Unlikely likelihood generally means that the vulnerability requires a high cost, or the exploitation

conditions are very demanding and the vulnerability is highly difficult to trigger.

 Rare

Rare likelihood generally means that the vulnerability requires an extremely high cost or the conditions

for exploitation are extremely difficult to achieve.

3.1.4 Fix Results Status

Status Description

Fixed The project party fully fixes a vulnerability.

Partially Fixed The project party did not fully fix the issue, but only mitigated the
issue.

Acknowledged The project party confirms and chooses to ignore the issue.



```

TONCO Security Audit

Page 19 of 23

3.2 Audit Categories

No. Categories Subitems

1 Coding Conventions

Redundant Code

Deprecated Items

Gas Consumption*

Event Trigger

Throw Usage

2 General Vulnerability

Message Forgery*

Restore on Failure*

Integer Overflow/Underflow

Pseudo-randomNumber Generator (PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)*

Function Call Permissions

Message Flow Error*

Returned Value Security

Data Structure Error*

Replay Attack

Overriding Variables

Third-party Protocol Interface Consistency

3 Business Security
Business Logics

Business Implementations

Beosin classified the security issues of smart contracts into three categories: Coding Conventions,

General Vulnerability, Business Security. Their specific definitions are as follows:

 Coding Conventions

Audit whether smart contracts follow recommended language security coding practices. For example,

smart contracts developed in Rust language should fix the compiler version and do not use deprecated

keywords.

 General Vulnerability


```

TONCO Security Audit

Page 20 of 23

General Vulnerability include some common vulnerabilities that may appear in smart contract projects.

These vulnerabilities are mainly related to the characteristics of the smart contract itself, such as

integer overflow/underflow and denial of service attacks.

 Business Security

Business security is mainly related to some issues related to the business realized by each project, and

has a relatively strong pertinence. For example, whether the lock-up plan in the code match the white

paper, or the flash loan attack caused by the incorrect setting of the price acquisition oracle.



```

TONCO Security Audit

Page 21 of 23

3.3 Disclaimer

The Audit Report issued by Beosin is related to the services agreed in the relevant service agreement.

The Project Party or the Served Party (hereinafter referred to as the "Served Party") can only be used

within the conditions and scope agreed in the service agreement. Other third parties shall not transmit,

disclose, quote, rely on or tamper with the Audit Report issued for any purpose.

The Audit Report issued by Beosin is made solely for the code, and any description, expression or

wording contained therein shall not be interpreted as affirmation or confirmation of the project, nor

shall any warranty or guarantee be given as to the absolute flawlessness of the code analyzed, the code

team, the business model or legal compliance.

The Audit Report issued by Beosin is only based on the code provided by the Served Party and the

technology currently available to Beosin. However, due to the technical limitations of any organization,

and in the event that the code provided by the Served Party is missing information, tampered with,

deleted, hidden or subsequently altered, the audit report may still fail to fully enumerate all the risks.

The Audit Report issued by Beosin in no way provides investment advice on any project, nor should it be

utilized as investment suggestions of any type. This report represents an extensive evaluation process

designed to help our customers improve code quality while mitigating the high risks in blockchain.


```

TONCO Security Audit

Page 22 of 23

3.4 About Beosin

Beosin is the first institution in the world specializing in the construction of blockchain

security ecosystem. The core team members are all professors, postdocs, PhDs, and Internet

elites from world-renowned academic institutions. Beosin has more than 20 years of research

in formal verification technology, trusted computing, mobile security and kernel security, with

overseas experience in studying and collaborating in project research at well-known

universities. Through the security audit and defense deployment of more than 2,000 smart

contracts, over 50 public blockchains and wallets, and nearly 100 exchanges worldwide,

Beosin has accumulated rich experience in security attack and defense of the blockchain field,

and has developed several security products specifically for blockchain.



Official Website
https://www.beosin.com

Telegram
https://t.me/beosin

X
https://x.com/Beosin_com

Email
service@beosin.com

LinkedIn
https://www.linkedin.com/company/beosin/

https://www.beosin.com
https://t.me/beosin

	1 Overview
	1.1 Project Overview
	1.2 Audit Overview
	1.3 Audit Method

	2 Findings
	[TONCO-01] Incentive calculation flaws
	[TONCO-02] Lack of Lock function
	[TONCO-03] The pool can be initialized multiple ti
	[TONCO-04] Poor calibration
	[TONCO-05] Redundant code

	3 Appendix
	3.1 Vulnerability Assessment Metrics and Status in
	3.2 Audit Categories
	3.3 Disclaimer
	3.4 About Beosin


